首页> 外文OA文献 >Deep convolutional neural fields for depth estimation from a single image
【2h】

Deep convolutional neural fields for depth estimation from a single image

机译:用于从单个图像进行深度估计的深度卷积神经场

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of depth estimation from a sin- gle monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo corre- spondences, motions etc. Previous efforts have been focus- ing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is mounting evidence that features from deep convo- lutional neural networks (CNN) are setting new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth esti- mations can be naturally formulated into a continuous con- ditional random field (CRF) learning problem. Therefore, we in this paper present a deep convolutional neural field model for estimating depths from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF. Specifically, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. The proposed method can be used for depth estimations of general scenes with no geometric priors nor any extra in- formation injected. In our case, the integral of the partition function can be analytically calculated, thus we can exactly solve the log-likelihood optimization. Moreover, solving the MAP problem for predicting depths of a new image is highly efficient as closed-form solutions exist. We experimentally demonstrate that the proposed method outperforms state-of- the-art depth estimation methods on both indoor and out- door scene datasets.
机译:在这项工作中,我们考虑了从单眼单眼图像进行深度估计的问题。由于没有可靠的深度线索,例如立体声对应,运动等,因此这是一项艰巨的任务。以前的工作一直集中在利用几何先验或其他信息源上,而所有这些都使用手工制作的功能。最近,越来越多的证据表明,深度卷积神经网络(CNN)的功能正在为各种视觉应用创造新的记录。另一方面,考虑到深度值的连续特性,深度估计自然可以公式化为连续条件随机场(CRF)学习问题。因此,我们在本文中提出了一种深度卷积神经场模型,用于从单个图像估计深度,旨在共同探索深层CNN和连续CRF的能力。具体来说,我们提出了一种深度结构化的学习方案,该方案可在统一的深度CNN框架中学习连续CRF的一元和成对潜力。所提出的方法可以用于一般场景的深度估计,而无需几何先验,也无需注入任何额外信息。在我们的情况下,可以解析计算分区函数的积分,因此我们可以精确地解决对数似然优化。此外,由于存在封闭形式的解决方案,解决用于预测新图像深度的MAP问题非常有效。我们通过实验证明了该方法在室内和室外场景数据集上均优于最新的深度估计方法。

著录项

  • 作者

    Liu, F.; Shen, C.; Lin, G.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号